Identification of the E1A-regulated transcription factor p120 E4F as an interacting partner of the RASSF1A candidate tumor suppressor gene.

نویسندگان

  • Sarah L Fenton
  • Ashraf Dallol
  • Angelo Agathanggelou
  • Luke Hesson
  • Jalal Ahmed-Choudhury
  • Shairaz Baksh
  • Claude Sardet
  • Reinhard Dammann
  • John D Minna
  • Julian Downward
  • Eamonn R Maher
  • Farida Latif
چکیده

Epigenetic inactivation of the candidate tumor suppressor gene RASSF1A is a frequent and critical event in the pathogenesis of many human cancers. The RASSF1A protein contains a Ras association domain, suggesting a role in Ras-like signaling pathways, and has also been implicated in cell cycle progression. However, the preliminary data suggests that the RASSF1A gene product is likely to have multiple functions. To identify novel RASSF1A functions, we have sought to identify interacting proteins by yeast two-hybrid analysis in a human brain cDNA library. We identified the E1A-regulated transcription factor p120(E4F) as a RASSF1A interacting partner in yeast and mammalian cells, and demonstrated that RASSF1A protein and p120(E4F) form a complex in vivo. The interaction between RASSF1A and p120(E4F) was confirmed by both in vitro and in vivo pull downs and coimmunoprecipitation assays. In addition, specific inactivation of RASSF1A by short interfering RNA disrupts binding of RASSF1A to p120(E4F) in coimmunoprecipitation assays. In addition, we demonstrated enhanced G(1) cell cycle arrest and S phase inhibition by propidium iodide staining of p120(E4F) in the presence of RASSF1A. As p120(E4F) has been reported previously to interact with p14ARF, retinoblastoma, and p53, these findings provide an important link between the function of RASSF1A and other major human tumor suppressor genes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Identification of the E1A-Regulated Transcription Factor p120 as an Interacting Partner of the RASSF1A Candidate Tumor Suppressor Gene

Epigenetic inactivation of the candidate tumor suppressor gene RASSF1A is a frequent and critical event in the pathogenesis of many human cancers. The RASSF1A protein contains a Ras association domain, suggesting a role in Ras-like signaling pathways, and has also been implicated in cell cycle progression. However, the preliminary data suggests that the RASSF1A gene product is likely to have mu...

متن کامل

Transcriptional regulation of cyclin A2 by RASSF1A through the enhanced binding of p120E4F to the cyclin A2 promoter.

Recent advances in the study of RASSF1A, the candidate tumor suppressor gene, indicate a possible role of RASSF1A in cell cycle regulation; however, very little is known regarding molecular mechanisms underlying this control. Using small interfering RNA to knockdown endogenous RASSF1A in the breast tumor cell line HB2 and in the cervical cancer cell line HeLa, we identify that a key player in c...

متن کامل

Transcriptional activation of the cyclin A gene by the architectural transcription factor HMGA2.

The HMGA2 protein belongs to the HMGA family of architectural transcription factors, which play an important role in chromatin organization. HMGA proteins are overexpressed in several experimental and human tumors and have been implicated in the process of neoplastic transformation. Hmga2 knockout results in the pygmy phenotype in mice and in a decreased growth rate of embryonic fibroblasts, th...

متن کامل

Tumor and Stem Cell Biology Loss of Rassf1a Synergizes with Deregulated Runx2 Signaling in Tumorigenesis

The tumor suppressor gene RASSF1A is inactivated through point mutation or promoter hypermethylation in many human cancers. In this study, we conducted a Sleeping Beauty transposon-mediated insertional mutagenesis screen in Rassf1a-null mice to identify candidate genes that collaborate with loss of Rassf1a in tumorigenesis. We identified 10 genes, including the transcription factor Runx2, a tra...

متن کامل

Loss of RASSF1A synergizes with deregulated RUNX2 signaling in tumorigenesis.

The tumor suppressor gene RASSF1A is inactivated through point mutation or promoter hypermethylation in many human cancers. In this study, we conducted a Sleeping Beauty transposon-mediated insertional mutagenesis screen in Rassf1a-null mice to identify candidate genes that collaborate with loss of Rassf1a in tumorigenesis. We identified 10 genes, including the transcription factor Runx2, a tra...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cancer research

دوره 64 1  شماره 

صفحات  -

تاریخ انتشار 2004